¹⁴N-³¹P, ¹⁵N-³¹P, and ³¹P-³¹P Coupling Constants From the ³¹P Nuclear Magnetic Resonance Spectra of Square Planar Platinum(II) and Palladium(II) Thiocyanate Complexes

By ARTHUR J. CARTY* and STEPHEN E. JACOBSON

(Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada)

Summary The ³¹P n.m.r. spectra of cis-PtX₂[P(OPh)₃]₂ (X = CNS, C¹⁵NS) show the independent existence of dithiocyanato, diisothiocyanato and mixed linkage isomers in solution, and the appearance of distinct resolvable ³¹P-³¹P, ¹⁴N-³¹P and ¹⁵N-³¹P coupling in the spectra of the mixed species suggests a means of measuring these couplings in co-ordination complexes.

CONSIDERABLE effort has been devoted to the measurement and interpretation of ³¹P-³¹P coupling constants in phosphine complexes.¹ Recent developments have included the synthesis by Grim and his co-workers of unsymmetrical ditertiary phosphine complexes as a means of obtaining J_{P-P} from direct measurements in ³¹P spectra² and the application of elegant double resonance, spin tickling and computer simulation techniques to the indirect determination of J_{P-P} .³ During the course of studies designed to identify thiocyanate linkage isomers in solution we found that the ³¹P n.m.r. spectra of cis-M(CNS)₂L₂† [M = Pt; $L = Ph_2PC_2R$, P(OR)₃] are a rich source of ³¹P-³¹P coupling constants owing to the preponderance of mixed (SCN)(NCS) species in solution. Moreover ¹⁴N-³¹P coupling is also clearly resolved in these spectra and we now report the first values for $J^{14}_{N-31_{P}}$ in co-ordination complexes together with the corresponding ¹⁵N coupling constants from ¹⁵N isotopically substituted complexes. The use of CNS- ligands (as opposed to halides) may provide a direct method of obtaining J_{P-P} for phosphine complexes without recourse to more elaborate indirect methods,

The ³¹P Fourier transform n.m.r. spectra of cis-Pt(NCS)-(SCN) $[P(OPh)_3]_2$ or $cis-Pt(NCS)_2[P(OPh)_3]_2^{\dagger}$ and the corresponding ¹⁵NCS isotopically substituted compounds are shown in the Figure. The spectra consist of four central resonances with attendant satellites due to coupling with 195 Pt $(I = \frac{1}{2}, 33\%)$. Chemical shifts and coupling constants are given in the Table. The spectra are consistent with the co-existence of cis-Pt(SCN)₂[P(OPh)₃]₂ (1) (resonance A), cis-Pt(NCS)(SCN)[P(OPh)₃]₂ (2) (resonances B and B') and cis-Pt(NCS)₂ [P(OPh)₃]₂ (3) (resonance C) in solution, with the mixed species predominating.§ Species (1) has two chemically equivalent phosphorus atoms and gives a singlet ³¹P resonance. An AB (or AX) spectrum might be expected from the two inequivalent phosphorus atoms in (2). Additional ${}^{14}N(I = 1)$ coupling to ${}^{14}N$ nuclei of the isothiocyanate group trans to phosphorus gives a triplet of doublets for one ³¹P resonance which appears as a doublet of doublets in the spectrum of the ¹⁵N-substituted species. Additionally, a small cis-coupling is resolved in the ³¹P resonance of the phosphorus *trans* to the thiocyanate group consistent with the higher resonance frequency of ^{15}N compared to ^{14}N at a given field strength. The couplings $^{195}Pt-P$ are readily extracted from satellite resonances,

FIGURE. The central portion $(^{195}\text{Pt} \text{ satellites not shown})$ of the ^{31}P spectra of (a) cis-Pt(CNS)₂[P(OPh)₃]₂ and (b) cis-Pt(C¹⁵NS)₂ P(OPh)₃]₂ in CH₂Cl₂ at 30°C.

† The thiocyanate ion is written as CNS when no particular bonding mode is implied.

[‡] The spectra appear to be independent of the isomer dissolved.

 $times the first unequivocal identification of mixed species Pt(NCS)(SCN)L_2 as opposed to mixtures of Pt(NCS)_2L_2 and Pt(SCN)_2L_2 in solution. cis-Pt(NCS)(SCN)[P(OPh)_3]_2 has been isolated in the solid state.⁴$

Chemical shifts^a/p.p.m. and coupling constants/Hz for cis-Pt(CNS)₂[P(OPh)₃]₂ in solution

Species		δ	${}^{2}J_{P-P}^{cls}$	${}^{2}J_{\mathrm{P-N}}^{cis}$	² J ^{trans} P-N	¹ J _{Pt-P}	${}^{2}J_{\mathrm{N-N}}^{cis}$
cis-Pt(SCN) ₂ [P(OPh) ₃] ₂	••••••	+68.7		. 0		5188	
cis-Pt(NCS)(SCN)[P(OPh) ₈] ₂	•• •	P trans to $S + 77.2$ P trans to $N + 84.2$	34 34	<3	63	$\begin{array}{r} 4946 \\ 5670 \end{array}$	
$cis-Pt(NCS)_2[P(OPh)_3]_2$	•• •	+91.7	0.			5636	
cis-Pt(SC ¹⁰ N) ₂ [P(OPh) ₃] ₂ cis-Pt(¹⁵ NCS)(SC ¹⁵ N)[P(OPh) ₂] ₂	•• •	+68.8 P trans to S $+77.1$	34	6		5190 4950	
		P trans to N $+84.2$	34		91	5672	
$cis-Pt(^{15}NCS)_2[P(OPh)_3]_2$	•••••	+91.6	36 ^b	7 ^b	95ь	5644	2 ^b

^a Measured in CH₂Cl₂ at 30° from external trimethylphosphite standard. Trimethylphosphite has $\delta = 28.5$ p.p.m. from P₄O₆.¹ ^b Approximate estimate only.

these (Table) being typical of cis-platinum(II) complexes.¹ The resolution of ¹⁴N-P coupling is unprecedented and presumably reflects a slow relaxation of ¹⁴N nuclei and a small electric field gradient at the nucleus. It is of interest that unresolved ¹⁴N-H or ¹⁴N-P coupling has been postulated as an explanation of line broadening in the ¹H n.m.r. spectrum of trans-PtH(NCS)(Et₃P)2⁵ and in the ³¹P spectrum of $trans-PtX \{(PhO)_2PO\}(Bu_3P)_2(X = NCO, NCS).^6$ The N-bonded species (3) gives a deceptively simple AA'XX' $(X = {}^{14}N; I = 1)$ spectrum which is simplified on ${}^{15}N$ substitution. The separation of the intense lines in the ¹⁵N substituted species $(J_{AX} + J_{AX}')$ is 88 Hz; other parameters derived from the analysis are given in the Table. The couplings J_{AX} and J_{AX}' appear to be opposite in sign. A complete analysis of both spectra is in progress.

complexes cis-Pt(CNS)₂(Ph₂PC \equiv CR)₂(R = Bu^t, Et, Ph) where ³¹P-³¹P, ¹⁴N- ³¹P and ¹⁵N-³¹P coupling constants are readily obtained from the ³¹P resonances of the mixed species. Corresponding palladium complexes are labile in solution and only exchange-broadened single-line spectra are observed at 30°. At -60° the spectra of all three species can be seen with the ratios being cis-Pd(NCS)(SCN)- $L_2 > cis$ -Pd(SCN)₂ $L_2 > cis$ -Pd(NCS)₂ L_2 [L = Ph₂PC =CR, P(OPh)3]. However ¹⁴N-³¹P coupling is unobserved and ${}^{2}J_{P-P}^{cis}$ is small (≤ 10 Hz) or unresolved.

We thank Dr. A. Pidcock and Dr. T. E. Gough for valuable discussion, the School of Molecular Sciences, University of Sussex for the ³¹P spectra and M. Siverns for running the spectra.

We have observed similar spectra for phosphinoacetylene

(Received, 3rd December 1974; Com. 1466.)

- ¹ J. F. Nixon and A. Pidcock, Ann. Rev. N.m.r. Spectroscopy, 1969, 2, 345; J. G. Verkade, Coordination Chem. Rev., 1972, 9, 1.
 ² S. O. Grim, J. D. Gaudio, R. P. Molenda, C. A. Tolman, and J. P. Jesson, J. Amer. Chem. Soc., 1974, 96, 3416 and references therein.
 ³ E. G. Finer and R. K. Harris, 'Progress in N.m.r. spectroscopy,' Vol. 6, ed., J. M. Emsley, J. Feeney, and L. H. Sutcliffe, Pergamon Press, New York, 1961, pp. 61—118; R. J. Goodfellow and B. F. Taylor, J.C.S. Dalton, 1974, 1676 and references therein.
 ⁴ S. Jacobson, N. J. Taylor, P. C. Chieh, and A. J. Carty, J.C.S. Chem. Comm., 1974, 520.
 ⁵ B. E. Mann, B. L. Shaw, and A. J. Stringer, J. Organometallic Chem., 1974, 73, 129.
 ⁶ F. H. Allen, A. Pidcock, and C. R. Waterbouxe, J. Chem. Soc. (A) 1970, 2087.

- ⁶ F. H. Allen, A. Pidcock, and C. R. Waterhouse, J. Chem. Soc. (A), 1970, 2087.